При конструировании радиоэлектронной аппаратуры (https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B4%D0%B8%D0%BE%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D0%B0%D0%BF%D0%BF%D0%B0%D1%80%D0%B0%D1%82%D1%83%D1%80%D0%B0)на полупроводниковых приборах с целью повышения ее надежности необходимо принимать все возможные меры к обеспечению тепловых режимов работы как всей аппаратуры в целом, так и отдельных ее элементов.
Особое внимание нужно обращать на создание конструкций, обеспечивающих наилучшие тепловые режимы работы полупроводниковых приборов и диодов.
Использование специально сконструированных охладителей как для мощных, так и для маломощных полупроводниковых приборов и диодов позволяет резко снизить рабочую температуру переходов при той же рассеиваемой мощности в приборе.
При значительных мощностях, рассеиваемых в полупроводниковых приборах, существенное снижение их рабочей температуры возможно лишь путем использования принудительного теплообмена, например воздушного, жидкостного или термоэлектрического охлаждения. Принудительный теплообмен приходится использовать в случае повышенной температуры окружающей среды. В этих случаях теплоотвод за счет естественной конвекции практически нужного эффекта не дает.
Теплоотвод нужно использовать не для того, что-бы увеличить мощность рассеяния на полупроводниковом приборе сверх установленной по ТУ, а для максимального снижения рабочей температуры переходов при заданной мощности.
Цель применения теплоотвода - повышение надежности работы полупроводниковых приборов в радиоэлектронной аппаратуре.
В настоящее время теплоотводящие охладители являются такими же деталями схемы, как конденсаторы, резисторы, трансформаторы. Необходимо предусматривать охладители с самого начала разработки схемы, а не на последнем этапе, когда труднее обеспечить оптимальный режим их применения.
Можно сформулировать ряд рекомендаций по применению радиаторов для диодов и полупроводниковых приборов при разработке радиоэлектронной аппаратуры:
1. Для электрической изоляции полупроводниковых приборов от охладителя следует применять изоляционные прокладки, оксидированный алюминий, лавсан, пленки ПТЭФ, имеющие минимальные тепловые сопротивления.
Для снижения контактного теплового сопротивления необходимо применять смазку из невысыхающего масла или тонкую фольгу из мягкого материала. Пригодна бериллиевая смазка КПТ-8 и полиметиленлаксановая жидкость ПМС-200.
2. При использовании изоляционных прокладок увеличивается общее тепловое сопротивление системы корпус-теплоотвод-окружающая среда.
В связи с этим лучше крепить полупроводниковый прибор к теплоотводу без изоляционных прокладок, но со смазкой, а охладитель изолировать от шасси.
3. Чистота обработки поверхности теплоотвода в месте крепления диода должна быть не менее 6. Плоскостность должна быть не хуже 1:50.
4. Для уменьшения теплового сопротивления охладителя и для увеличения коэффициента теплоотдачи необходимо производить покрытие охладителя (исключая место крепления полупроводникового прибора) лаком или краской со степенью черноты 0,8-0,9.
5. Диоды должны крепиться к охладителю обязательно с помощью всех предусмотренных крепежей и с достаточно сильной и равномерной натяжкой их.
При значении удельной нагрузки более 200 кг/см2 удельное тепловое сопротивление контакта практически не зависит от величины нагрузки.
6. Недопустимо сверление общего отверстия в радиаторе для всех выводов полупроводникового прибора, что уменьшает площадь теплового контакта. Отверстия для каждого из выводов должны быть самого малого диаметра, допускаемого размерами вывода с необходимой изоляцией.
7. Радиаторы следует крепить вдали от нагревающихся элементов схем.
8. Между охладителями и сильно греющимися элементами схемы необходимо ставить полированный алюминиевый экран.
Рекламный спонсор: https://kzask.ua/radiator/ - производство радиаторного алюминиевого профиля для РЭА.
Комментариев нет:
Отправить комментарий